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We investigate an electronic Mach-Zehnder interferometer with high visibility in the quantum Hall regime.
The superposition of the electrostatic potentials from a quantum point contact �QPC� and the residual disorder
potential from doping impurities frequently results in the formation of inadvertent quantum dots �QDs� in one
arm of the interferometer. This gives rise to resonances in the QPC transmission characteristics. While crossing
the QD resonance in energy, the interferometer gains a phase shift of � in the interference pattern.
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I. INTRODUCTION

The conductance G of an Aharonov-Bohm �AB� ring os-
cillates with magnetic field B with a period �B determined
by the area A between two interfering paths �B=�0 /A,
where �0=h /e is the flux quantum. The combination of the
AB ring with a quantum dot �QD� in one of its arms gives
the opportunity to measure the phase of transmission ampli-
tude through the QD.1 The dot, tuned to a transmission reso-
nance, sustains coherent transport all over the width of the
resonance peak. So far this was realized in different groups
by recording AB oscillations as a function of the magnetic
field and tracing their phase with respect to the energy of the
resonant state, which was controlled by a plunger gate.2–4

Fano resonances were observed in Ref. 4 while other
works2,3 show the phase evolution of AB oscillations while
scanning through each Coulomb peak in energy changing the
plunger gate. Here a slip by � was seen, what can be ex-
plained in a single-particle picture. For the observed � jump
between two Coulomb peaks,2 a theory involving many par-
ticles is needed. Besides the phase of the transmitted current
also the phase of the reflected current was probed,3 which
showed similar results. In order to determine the energy de-
pendence of the phase, it was necessary to record many G�B�
traces differing in plunger gate, each resulting, in a single
point in the phase evolution. The question arises, whether
one could directly measure the phase in an interferometer,
when the QD crosses a resonance. This has two attractive
advantages. First, the measurement process speeds up be-
cause information about phase is acquired in a single sweep
of the plunger gate. Second, with such a fast measurement
process, one could think about detection of the charge state
for the QD by measuring its transmission �reflection� phase.
The latter can be important for building charge qubits based
on double quantum-dot system. However, in conventional
AB interferometers, the small interference contrast �typically
10%� and signal noise makes this task difficult.4 In this work,
we report on measurements of QD transmission phase with
an electronic Mach-Zehnder interferometer �MZI�.5 The
electronic Mach-Zehnder interferometer employs edge chan-
nels of a two-dimensional �2D� electron system in the quan-
tum Hall regime and quantum point contacts as beam split-
ters. The interference contrast can be very large, up to 80 %,
at temperatures near 20 mK.6

II. EXPERIMENTAL DETAILS

The interferometer �see Fig. 1� was fabricated on the basis
of a modulation-doped GaAs /GaxAl1−xAs heterostructure
containing a 2D electron gas �2DEG� 90 nm below the sur-
face. At 4 K, the unpatterned 2DEG density and mobility
were n=2.0�1015 m−2 and �=206 m2 / �V s�, respectively.
The details of fabrication procedure can be found in Ref. 7.
Each arm of the MZI was approximately 9 �m long and the
gap between the tips of quantum point contacts was 400 nm.
This interferometer showed a maximum visibility of 56%
and an area of 25 �m2 between interfering paths, found
from the period of Aharonov-Bohm oscillations. A standard
lock-in technique �f �300 Hz� with 1 �V excitation at ter-
minal S and detection at terminal D2 was employed �see Fig.
1�. All measurements were performed at a temperature below
50 mK.

III. CHARACTERIZATION OF THE QUANTUM
POINT CONTACTS

In many experiments, the transmission characteristics of
the QPCs, in high perpendicular magnetic field exhibit reso-
nances superimposed on the conductance steps �Fig. 2�a�, see
also Refs. 8–10�. As we will show below, our data suggest
that this originates from the Coulomb blockade of a quantum
dot formed inadvertently by the disorder potential in the vi-
cinity of the QPCs. The interference contrast was highest for
the outer edge channel. To record the characteristics in Fig.

FIG. 1. Scanning electron microscopy image of Mach-Zehnder
interferometer with the scheme of paths for nonequilibrium current.
The transmission of QPC1 and QPC2 is set to 0.5. QPC0 transmits
the outer edge channel and reflects the inner one in case the filling
factor being more than 1. The MG is used to shift the phase.
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2�a�, �i� the magnetic field was set to 4.8 T �filling factor
1.6�, �ii� QPC0 was adjusted to transmit only the outermost
channel, and �iii� the gate voltage for QPC2 was swept to
negative voltages while keeping QPC1 open �see also Fig.
3�a��. A sequence of peaks �marked by letters A, B, and C in
Fig. 2�a�� in the gate characteristics of QPC2 appears at
transmissions less than 1. It is of interest to check if any peak
structure can be found in the dependence on a magnetic field.
The magnetic field dependence of transmission of QPC2 is
plotted in Fig. 3�c�. While sweeping the magnetic field, the
data was recorded after adjusting QPC0 to reflect the half-
filled upper Landau level, opening QPC1, and tuning the gate
voltage of QPC2 at the maximum of peak “A” �TQPC2

=0.65��B=4.8 T�. The overall QPC2 transmission in Fig.
3�c� decreases nonmonotonically from left to right. Increas-
ing magnetic field changes energies of the Landau levels. For
low magnetic fields �B�3.8 T�, QPC2 is fully transmitting
the corresponding edge channel whereas for high magnetic
fields �B�6.4 T�, it is mostly reflecting it. Also QPC0 can
do this but while TQPC0=1 at B=4.8 T, TQPC2=0.65 as men-
tioned above, i.e., the potential barrier of QPC2 is higher
than of QPC0. Additionally we find oscillatory components
in the QPC2 transmission, which are not expected for a
single barrier but could easily appear in a device with two
and more barriers or an antidot structure.11 Fourier analysis
reveals two frequencies in B, corresponding to periods of
0.27 and 0.18 T, and their higher harmonics. When inter-
preted as Aharonov-Bohm oscillations ��B ·A=e /h�, these
two periods correspond to areas enclosed by circumference
with diameter d=2�A /� of 140 and 170 nm. This is well
compatible with the lithographic gap between QPC tips �400
nm� and with the spatial variation in the disorder potential
near 100 nm measured, e.g., in Ref. 12 for 2DEG structure
with parameters similar to ours. Aharonov-Bohm oscillations
induced by potential fluctuations in single QPC in high mag-
netic field was reported before.13 In addition, we found that
the resonances in Fig. 2�a� are also dependent on cooling
cycle, i.e., the shape of the resonances is unique for each
cool down. This indicates that charging of donor atoms in the
doping layer plays a role in the resonance formation.

We conclude that, due to the background potential near or
in between the QPC tips, electrons are localized leading to
discrete energy levels. This was found by several groups but
yet without a clear explanation so far. As we will describe in
the next paragraph, this influences the transport properties of
the MZI.

IV. PHASE SHIFTS BY THE QUANTUM DOT

Next, we discuss the response of the MZI interference
near the resonances in the transmission of QPC2. To inves-
tigate this, first, the QPC1 must be set to half transmission,
generating two interfering paths as shown in Fig. 3�b�. Sec-
ond, the interference signal must be measured as a function
of the QPC2 gate voltage. Here two possibilities arise de-
pending on the regime for a modulation gate �MG� voltage
VMG which is normally used to observe interference by shift-
ing the phase of one arm with respect to other. These are �i�
sweeping VMG simultaneously with the QPC2 gate voltage
and �ii� keeping VMG constant. The former allows to deter-
mine the interference contrast as a function of VQPC2 �or
TQPC2� and was demonstrated before �Ref. 10, Fig. 1�c�; Fig.
2�a��. In contrast, the latter is sensitive to any phase gain
during a change in the QPC2 gate voltage. We explore both
of these opportunities starting from the measurement of the
span for AB oscillation vs VQPC2. The relative amplitude of
oscillations is called visibility �I, �I= �Imax− Imin� / �Imax
+ Imin�, and is plotted in Fig. 2�b�. Here one sees that the
visibility �I peaks at the transmission resonances A, “B,” and
“C.” Qualitatively, this is explained by the fact that the vis-
ibility has a maximum when both arms carry equal current,
i.e., at TQPC=1 /2 �a quantitative analysis follows below�.

ν

FIG. 2. �Color� �a� Transmission characteristic of QPC2 as a
function of the QPCs gate voltages at B=4.8 T. The horizontal line
denotes half transmission of the QPC which should in a single-
particle picture correspond to the highest visibility. �b� Visibility of
Aharonov-Bohm oscillations, experimentally measured �thick red
line� and calculated from transmission of QPC2 �thin black line�
versus QPC2 gate voltage �TQPC1=0.5, see Eq. �2��. The regions of
discrepancy are marked by arrows. �c� Interferometer current for
different modulation gate voltages, i.e., different AB phases
�TQPC1=0.5�.

FIG. 3. �a� Scheme for probing transmission characteristic of
QPC2 with QPC1 opened, and that �b� for interference experiment
with both QPCs partially transmitted. The circle at the QPC2 sym-
bolizes the quasibound state of quantum dot. �c� Oscillatory trans-
mission of outermost edge channel as a function of magnetic field
when transmission of QPC2 is less than 1. The arrow marks the
point where the additional frequency �with almost half period� sets
in.
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Therefore, the closer TQPC is to 1/2, the higher is the visibil-
ity. The phase information does not show itself in this ex-
periment but it does when the modulation gate voltage VMG
is kept constant �Fig. 2�c��. We focus on the resonances B
and C where an abrupt change in the current is observed.
Some traces show at B and C a clear alternation between a
peak and a dip structure. That means if the AB oscillations
are adjusted to a maximum with MG, it changes abruptly to
a minimum, when passing the resonance. This implies a
phase change by � at the resonance. Such phase shift in
connection with resonant behavior was already noticed be-
fore but the physical origin of the resonances remained
unclear.14

Now we address quantitatively the results in Fig. 2 in the
framework of a model assuming noninteracting particles.
This model predicts the MZI transmission coefficient,5

TSD2 = �t1r2�2 + �r1t2�2 − 2�t1t2r1r2�cos �	 , �1�

here ti , ri are transmission and reflection amplitudes of
QPCs and �	 is the phase difference between the interfer-
ometer arms. From this formula, one can easily find the ex-
pression for the visibility as a function of one of the QPC
transmission, namely,

�I = z · 2�TQPC2�1 − TQPC2� , �2�

where the factor z�1 accounts for the decoherence at finite
temperature. We have used z=0.42 corresponding to the
maximum measured visibility. Using this expression and the
measured transmission values for TQPC2 in Fig. 2�a�, we cal-
culate the dependence of visibility �I�TQPC2� and compare it
with the experimental one. The black, thin line in Fig. 2�b�
shows the result, which agrees in general well with the ex-
periment. There are two regions of deviation from the simple
model of Eq. �2�, marked by arrows in Fig. 2�b�, and peak B
is within one of those. In contrast to this the peak C, with
small transmission value, is well described by the model, as
well as the region with transmission close to 1 �VQPC2�
−651 mV� and the one on the right wing of the peak A
�−708�VQPC2�−678 mV�.

Following the noninteracting particle approach from Ref.
2, we add a quantum dot to the above-mentioned MZI,
whose transmission properties are modeled by the Breit-
Wigner formula. We replace transmission and reflection am-
plitudes of QPC2 by those of the quantum dot. The dot trans-
mission amplitude has a phase which must be added to the
cosine argument in Eq. �1�. Then the coherent component
in MZI transmission is proportional to TSD2coh

 �tQD��rQD�cos��	+��tQD��, where tQD, rQD, and ��tQD�
stand for the transmission �reflection� amplitude of QD and
the phase of QD, respectively. The Breit-Wigner formula for
the selected state with the energy En,

tQD = �tQD�ei� =
�i�/2�

�E − En + i�/2�
�3�

with ��tQD�=arctan� 2
� �E−En�� and relation �rQD�=�1− �tQD�2

were applied for the simulation of experimental curves �in
Fig. 4�.

This model rather well describes the interference reso-
nances B and C. The peak A was analyzed below only quali-
tatively because it deviates over a wide range from Eq. �3�.
The resonance C was matched well by calculated curves
�Fig. 4�a�� with resonance width of �C=1.9 mV determined
from fit by Lorentzian, the peak in the QPC2 transmission in
Fig. 2�a�. Therefore, the only fitting parameter for this inter-
ference resonance was the phase shift �	. For peak B �Fig.
4�b��, an effective transmission resonance, of smaller ampli-
tude and width ��B=2.5 mV instead 3.4 mV in Fig. 2�a��,
matching the experimental visibility in Fig. 2�b�, was used.

In addition to the good matching of the experimental
curves in Figs. 4�a� and 4�b� to Eq. �3�, the validity of our
interpretation is supported by the correlation between the
phase set by the modulation gate voltage and that determined
from the best fit to experimental data in Figs. 4�a� and 4�b�
with Eq. �3�. The period of AB oscillations in VMG was found
to be 1.6 mV, which corresponds to phase change of 2 �. In
Fig. 4�c�, we plot the phase found from fitting as a function
of modulation gate voltage �	�VMG� for the peaks C
�squares� and B �circles�, and from these graphs extract the
slope a of �	=aVMG. We find �	= 2� /1.6 mV, which is
in perfect agreement with the period VMG extracted from the
interference pattern ID2�VMG�.

The phase shift �	 of peak A can only be determined
qualitatively as mentioned above. From Figs. 4�a� and 4�b�,
one can see that a peak in the interference resonance corre-
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FIG. 4. �Color online� �a� The resonance C �dots�, shown in Fig.
2�c�, fitted by model of an interferometer with quantum dot in one
arm �full line� for different voltages of modulation gate VMG=0.4,
0.8, 1.2, and 2.0 mV changing from bottom to top. �b� The same for
the peak B in Fig. 2�c�. The curves in �a� and �b� shifted for clarity
except lowest one. �c� The phase shift between interferometer arms,
found from the fit to the resonances B and C, plotted as a function
of VMG. The full lines in �c� are expected slopes resulted from AB
period �VMG=1.6 mV in VMG. The phase evolution for the reso-
nance A was evaluated by procedure described in the text.
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sponds to �	=2�, the dip to �, combination left peak/right
dip to � /2, and left dip/right peak to 3� /2. Comparing this
with the shape of the interference resonance of peak A, we
can deduce an approximate phase shift. It is interesting to
investigate the direction of the phase evolution in Fig. 4�c�
�	�VMG� for the neighboring peaks A and B, and peak C.

As a result, peak A shows the same direction of phase
evolution as B �Fig. 4�c�, triangles�. On the other hand, the
phase evolution of peak C goes into the opposite direction.
This discrepancy may originate from the variability of two
barriers since the dot is defined by the single QPC2 gate and
the disorder potential. Tuning the gate potential of QPC2
changes simultaneously the two barrier heights of the QD
and its well depth.

The largest of the two barriers must be the branching
point of the interferometer path. If the barriers interchange
their height, the branching point will interchange its location
as well. In this case, the � phase shift from the quantum dot
may contribute either to the upper arm or to the lower one
�Fig. 3�b��, and depending on this, gain its different sign in
the paths phase difference.

V. CONCLUSIONS

In summary, we have shown that the frequently observed
transmission resonances in quantum point contacts within an
electronic Mach-Zehnder interferometer stem from inadvert-
ent quantum dots formed by the disorder potential in high
magnetic field and measured the phase of the transmission
amplitude through a quantum dot. We propose to utilize this
effect for the detection of the state of charge qubits in the
vicinity of a Mach-Zehnder interferometer via their reflection
phase. Such a dispersive readout may allow more sensitive
and less invasive detection than the currently used quantum
point contacts.
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